

Managing Sample-to-Answer Multi-omics Workflows

0

Informatics in Context – USDA Case Study

We often characterize scientific data analysis and management as pure engineering challenges that can be solved through technology.

> Science is a collaborative, social process accelerated by technology.

People + process drive Technology

Regardless of the science, understanding the people, process, and technology is essential to developing comprehensive solutions.

People

• Who is doing the work? Who is *requesting* the work? Who needs the results?

Process

- How do samples move through workflows?
- What types of measurements are needed? What types of data is collected? What analysis is required?

Technology

• What options are available, what options make sense given the people and process? How do the pieces fit together to form a cohesive solution?

Case Study U.S. Meat animal research center **USDA-ARS**

USMARC multi-omics workflows

- Mammalian and microbial genomics on a wide range of food producing species
- NGS, microarrays, mass spectrometry, et al

- Combined to form complex "multiomics" workflows
- Constantly evolving new methods
- Informatics system manages and track everything

Example: bioreactor workflow

- 1. Animal samples are collected in the field
- 2. A specimen is placed in bioreactor, samples taken at multiple time points
- 3. Each sample is characterized by phenotype, structure (proteomics via mass spec), and sequenced
- 4. All time points are collated and summarized
- 5. Each step generates wet lab artifacts (new samples) and data artifacts
- 6. Results are available for manual downstream analysis

People

Farmers

Manage the animals and collect samples

Scientists

- Design and run experiments
- May handle sample and library prep
- Perform analysis using a mix of open source and commercial tools

Lab Technicians

· Handle most of the wet lab work related to the instruments

IT

- Strong on-site hardware IT team with HPC expertise
- No on-site software development capabilities

Process

Samples

- Samples sourced on-site and from partners
- Track farm, lab, and analysis data
- Complex parent/child relationships

Workflows

- Standard methods (phenotyping, assembly, RNA-Seq, etc)
- Variations and new methods

Instruments

• Multiple vendors – PacBio, Illumina, Biolog, Waters

Analysis

- Vendor tools
- Pipelines via Galaxy and Lab7 ESP
- Manual analysis using R and Matlab

Technology

Sample Management

- Animal Database for field data collection
- Lab7 ESP Sample Registry for full sample lifecycle tracking

Workflow Management

• "Small" workflows managed in ESP are chained to form more complex workflows, allowing careful process tracking while maintaining operational flexibility

Instrument Integration

- Mix of API calls, file system monitoring, and run sheet generation ties workflows directly to instruments, with a goal of no manual data entry
- Vendor support is key to seamless integration

Analysis

- Standard analysis integrated directly into workflows when possible (e.g., assembly and annotation pipeline)
- · Data made available for off-line analysis
- CLI tools enable data provenance outside of ESP

Results

- Sample-to-answer workflow management
- Support stand-alone workflows and complex, integrated workflows
- Agnostic towards assays, instruments, compute resources, and analysis methods
- Leverages technology appropriate for the target users

Demand for ESP:

Multiomic Workflows

- Mammalian and microbial genomics on wide range of food producing species
- NGS, microarrays, mass spectrometry
- Constantly evolving new methods
- Informatics system manages and track everything

Disparate Stakeholders

- Farmers
- IT

Solution: connect people + processes + technology with ESP

Sample Management

- Animal Database for field data collection
- ESP Sample Registry for full sample lifecycle tracking

Workflow Management

· "Small" workflows managed in ESP are chained to form more complex workflows, allowing careful process tracking while maintaining operational flexibility

Instrument Integration

- · Mix of API calls, file system monitoring, and run sheet generation ties workflows directly to instruments, with a goal of no manual data entry
- NGS Sequencers: Illumina NextSeg & MiSeg, PacBio RSII & Sequel
- Other equipment: Biolog OmniLog, Waters Mass Spec

Analysis

- Standard analysis integrated directly into workflows when possible (e.g., assembly and annotation pipeline)
- Data made available for off-line analysis
- CLI tools enable data provenance outside of ESP